Created Date: 2020-05-19 15:32:33
Last Upgraded Date: 2020-05-19 23:56:36


概率论的基本概念

随机试验、样本空间和随机事件

随机试验

  • 可以在相同条件下重复地进行;
  • 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;
  • 进行一次试验之前不能确定哪一个结果会发生。

样本空间

随机试验E的所有可能结果组成的集合,记为S。

样本点

样本空间的元素,即随机试验E的每个结果。

随机事件

随机试验E的样本空间S的任一子集,简称事件。

在每次试验中,当且仅当这一子集中的一个样本点出现时,称该事件发生

由一个样本点组成的单点集成为基本事件

样本空间S包含所有的样本点,它是S自身的子集,在每次试验中它总是发生的,S称为必然事件

空集∅是样板空间的子集,它在每次试验中都不发生,称为不可能事件

事件关系与运算

  • 事件A与B是互不相容的,或互斥的:
    $$
    A\cap B = \varnothing
    $$

  • 事件A、B互为逆事件,或对立事件:
    $$
    A\cup B = S 且 A\cap B=\varnothing
    $$

  • 差事件可用对立事件表示:
    $$
    A-B=A\overline{B}
    $$

    $$
    \overline{A}=S-A
    $$

事件运算律

  • 交换律:
    $$
    A\cup B=B\cup A
    $$

    $$
    A\cap B=B\cap A
    $$

  • 结合律:
    $$
    A\cup(B\cup C)=(A\cup B)\cup C
    $$

    $$
    A\cap(B\cap C)=(A\cap B)\cap C
    $$

  • 分配率:
    $$
    A\cup(B\cap C)=(A\cup B)\cap(A\cup C)
    $$

    $$
    A\cap(B\cup C)=(A\cap B)\cup(A\cap C)
    $$

  • 德摩根律:
    $$
    \overline{A\cup B}=\overline{A}\cap \overline{B}
    $$

    $$
    \overline{A\cap B}=\overline{A}\cup \overline{B}
    $$

区分互逆事件互斥事件
$$
A与B互斥\Leftrightarrow AB=\varnothing
$$

$$
A与B互逆\Leftrightarrow AB=\varnothing 且 A\cup B=S
$$

频率、概率与等可能概形(古典概形)

频率、频数

n次试验,A事件发生$n_A$次。

$0\le f_n(A)\le1$。

$f_n(S)=1$。

若$A_1,A_2,\dots,A_k$是两两互不相容的事件,\则$f_n(A_1\cup A_2 \cup \dots \cup A_k)=f_n(A_1)+f_n(A_2)+\dots+f_n(A_k)$。

频率的稳定性:当重复试验的次数n逐渐增大时,频率$f_n(A)$呈现出稳定性,逐渐稳定于某个常数。

概率的公理化定义(柯尔莫格洛夫【1993年】)

设E是随机试验,S是它的样本空间。对于E的每个事件A赋予一个实数,记为$P(A)$,如果集合函数P(·)满足下列条件:

  • 非负性:对于每个事件A,有$P(A)\ge 0$;
  • 规范性:对于必然事件S,有$P(S)=1$;
  • 可列可加性:设$A_1,A_2,\dots$是两两互不相容的事件,即对于$A_iA_j=\varnothing$,$i\ne j$,$i,j=1,2,\dots$,有$P(A_1\cup A_2\cup \dots)=P(A_1)+P(A_2)+\dots$,则称P(A)为事件A概率。

概率的性质

  • $P(\varnothing)=0 \Rightarrow$有限可加性:设$A_1,A_2,\dots,A_n$是两两互不相容的事件,则有$P(A_1\cup A_2\cup \dots \cup A_n)=P(A_1)+P(A_2)+\dots+P(A_n)$。

  • 设事件$A\subset B$,则$P(B-A)=P(B)-P(A)$,$P(B)\ge P(A)$。

  • 对于任一事件A,$P(A)\le 1$,且$P(\overline{A})=1-P(A)$。

  • 加法公式:$P(A\cup B)=P(A)+P(B)-P(AB)$,对$\forall $事件$A,B$$。

  • 对$\forall n$个事件$A_1,A_2,\dots,A_n$,可归纳证明$P(A_1\cup A_2\cup \dots \cup A_n)$为$\sum_{i=1}P(A_i)-\sum_{1\le i < j \le n}P(A_iA_j)+\dots + (-1)^{n-1}P(A_1A_2\dots A_n)$。

等可能概型

$$
P(A)=\frac{A包含的基本事件数}{样本空间S中基本事件的总数}
$$

排列与组合公式推导的两条计数原理

  • 乘法原理
  • 加法原理
  • 排列公式
  • 组合公式
  • 重复排列

合适的样本空间

事件的运算法则和概率的性质

条件概率和独立性

条件概率

$$
P(B|A)=\dfrac{P(AB)}{P(A)}
$$

事件A($P(A) > 0$)发生的条件下,事件B的条件概率。

满足概率的公理化定义

  • 非负性:对于任一事件B,有$P(B|A)\ge 0$;
  • 规范性:对于必然事件S,有$P(S|A)=1$;
  • 可列可加性:设$B_1,B_2,\dots$是两两互不相容的事件,则有$P(\bigcup^\infty_{i=1} B_i|A)=\Sigma^\infty_{i=1}P(B_i|A)$。

条件概率的性质

设事件A的概率$P(A) > 0$,则$P(\varnothing|A)=0$,以及

  • 有限可加性:对任意两两互不相容的事件$B_1,B_2,\dots , B_n$,有
    $$
    P[(B_1\cup B_2\cup \dots \cup B_n)|A]=P(B_1|A)+P(B_2|A)+\dots+P(B_n|A)。
    $$

  • 若$B\subset C$,则有$P[(C-B)|A]=P(C|A)-P(B|A)$。由条件概率的非负性,可知$P(C|A)\ge P(B|A)$。

  • 对于任意的事件B,有$P(B|A)+P(\overline{B}|A)=1$。

  • 加法公式:对于任意两个事件B和C,有
    $$
    P[(B\cup C)|A]=P(B|A)+P(C|A)-P(BC|A)。
    $$

  • 对$\forall n$个事件$B_1,B_2,\dots , B_n$,$P[(B_1\cup B_2\cup \dots \cup B_n)|A]$等于
    $$
    \sum_{i=1}^nP(B_i|A)-\sum_{1\le i < j\le n}P(B_iB_j|A)+\sum_{1\le i<j<k\le n}P(B_iB_jB_k|A)+\dots+(-1)^{n-1}P(B_1B_2\dots B_n|A)。
    $$

乘法定理

  • 设$P(A) > 0$,则有$P(AB)=P(B|A)P(A)$。
  • 若$P(AB) > 0$,则有$P(ABC)=P(C|AB)P(B|A)P(A)$。

一般地,设n个事件$A_1,A_2,\dots ,A_n$满足$P(A_1A_2\dots A_{n-1} > 0)$,则
$$
P(A_1A_2\dots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\dots P(A_n|A_1A_2\dots A_{n-1})。
$$

样本空间的划分

全概率公式

设试验E的样本空间为S,$B_1,B_2,\dots , B_n$为S的一个划分,且$P(B_i) > 0(i = 1,2,\dots , n)$,则对任意事件A,有
$$
P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+\dots+P(A|B_n)P(B_n)。
$$

贝叶斯公式

设试验E的样本空间为S,$B_1,B_2,\dots , B_n$为S的一个划分,且$P(B_i) > 0(i = 1,2,\dots , n)$,若事件A的概率$P(A) > 0$,则
$$
P(B_i|A)=\frac{P(A|B_i)P(B_i)}{\sum_{j=1}^nP(A|B_j)P(B_j)},i=1,2,\dots,n。
$$

两个事件相互独立

$$
A和B相互独立\Leftrightarrow P(AB)=P(A)P(B)
$$

两事件其中一个已发生,不影响另一个发生的概率。

事情独立性的两个定理

  • 设$A,B$是两事件,且$P(A) > 0$,则
    $$
    A和B相互独立\Leftrightarrow P(B|A)=P(B)
    $$

  • 若事件$A$与$B$相互独立,则$A$与$\overline{B}$,$\overline{A}$与$B$和$\overline{A}$与$\overline{B}$都相互成立。

任意n个事件相互独立($n\ge 3$)

事件A,B,C相互独立
$$
\Leftrightarrow \left{
\begin{array}{lr}
P(AB)=P(A)P(B)\
P(BC)=P(B)P(C)\
P(AC)=P(A)P(C)\
P(ABC)=P(A)P(B)P(C)
\end{array}
\right.
$$

若事件$A_1,A_2,\dots ,A_n(n \ge 2)$相互独立,则其中任意$k(2\le k \le n)$个事件也是相互独立的,并且若将$A_1,A_2,\dots ,A_n$中任意多个事件换成他们的逆事件,所得的$n$个事件仍相互独立。

随机变量及其分布

离散型随机变量及其分布律

随机变量

设随机试验E的样本空间为S,X是定义在样本空间S上的实值单值函数。

设X是一随机变量,L是一个实数集合,将X在L上取值写成${x \in L}$,表示事件$B={e \in S | X(e) \in L}$
$$
P{X\in L}=P(B)=P{e|X(e)\in L}
$$

离散型随机变量

全部可能取到的值是有限个或者可列无限多个的随机变量。

随机变量的取值随随机试验的结果而定,在试验之前不能预知它取什么值,且它的取值有一定的概率。

随机变量的引入,使我们能用随机变量来描述各种随机现象,并能利用数学分析的方法对随机试验的结果进行深入研究和讨论。

离散型随机变量X的分布律

(0-1)分布——两点分布

$$
P{X=k}=p^k(1-p)^{1-k}, k=0,1,(0<p<1)
$$

伯努利试验

设随机试验$E$只有两个可能结果:$A$及$\bar{A}$,则称$E$为伯努利试验。将$E$独立重复地进行n次,则称这一串重复的独立试验位n重伯努利试验。重复指的是每次试验中$P(A)=p$保持不变;独立指的是各次试验的结果互不影响,若以$C_i$记第i次试验的结果,则$P(C_1C_2\dots C_n)=P(C_1)P(C_2)\dots P(C_n)$。

二项分布

$$
P{X=k}=C^k_np^kq^{n-k}, k=0,1,2,\dots ,n\
X\sim b(n,p)
$$

泊松分布

$$
P{X=k}=\frac{\lambda^ke^{-\lambda}}{k!}, k=0,1,2,\dots ,n, (\lambda>0)\
X\sim \pi(\lambda)
$$

泊松定理

设$\lambda>0$是一个常数,n是任意正整数,设$np_n=\lambda$,则对于任一固定的非负整数k,有
$$
{lim}_{n\to \infty}C^k_np^k_n(1-p_n)^{n-k}=\frac{\lambda^ke^{-\lambda}}{k!}
$$
泊松定理表明当n很大,p很小$(np=\lambda)$时有以下近似式
$$
C^k_np^k_n(1-p_n)^{n-k}\approx \frac{\lambda^ke^{-\lambda}}{k!}\(其中\lambda=np)
$$
以n,p为参数的二项分布的概率值可由参数为$\lambda=np$的泊松分布的概率值近似。

负二项分布——出现r次成功为止

$$
P{Y=k}=C^{r-1}_{k-1}p^r(1-p)^{k-r}, k=r,r+1,\dots
$$

几何分布——出现1次成功为止

$$
P{X=k}=p(1-p)^{k-1}, k=0,1,2,\dots
$$

超几何分布——总量N特殊D抽取n

$$
P{Y=k}=\frac{C^k_DC^{n-k}_{N-D}}{C^n_N}
$$

随机变量的分布函数

分布函数

  • 不减函数
  • $0\le F(x)\le 1$,且$F(-\infty)={lim}_x\to -\infty F(x)=0, F(\infty)={lim}_x\to \infty F(x)=1$
  • 右连续的 $F(x+0)=F(x)$

离散型随机变量的分布函数

$$
F(x)=P{X\le x}=\sum_{x_k \le x}P{X=x_k}
$$

连续型随机变量及其概率密度

$$
F(x)=\int^x_{-\infty}f(t)dt
$$

  • X的分布函数F(x)是连续函数
  • 对于任一实数值a,X取值为a的概率为零,即$P{X=a}=0$
  • 计算连续型随机变量落在某一区间的概率时,可不区分该区间是开区间或闭区间或半闭区间
  • A是不可能事件$\Rightarrow P(A)=0$

概率密度函数

  • $f(x)\le 0$
  • $\int^{\infty}_{-\infty}f(x)dx=1$
  • $P{x_1 < X\le x_2}=F(x_2)-F(x_1)=\int^{x_2}_{x_1}f(x)dx$
  • 若f(x)在点x处连续,则有$F^’(x)=f(x)$

均匀分布

![image-20200602220909149](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602220909149.png)

![image-20200602220956668](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602220956668.png)

指数分布

![image-20200602221143504](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602221143504.png)

![image-20200602221158976](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602221158976.png)

正态分布

![image-20200602221235743](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602221235743.png)

![image-20200602221333466](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602221333466.png)

![image-20200602221351494](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602221351494.png)

![image-20200602221528227](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602221528227.png)

随机变量的函数的分布

![image-20200602221714699](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602221714699.png)

![image-20200602221945002](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602221945002.png)

![image-20200602222011184](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602222011184.png)

![image-20200602222100413](/Users/reneelin/Library/Application Support/typora-user-images/image-20200602222100413.png)

多维随机变量及其分布

二维随机变量

![image-20200603002626806](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002626806.png)

![image-20200603002652847](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002652847.png)

![image-20200603002708905](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002708905.png)

![image-20200603002722897](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002722897.png)

![image-20200603002739928](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002739928.png)

![image-20200603002752851](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002752851.png)

边缘分布、条件分布

![image-20200603002838394](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002838394.png)

![image-20200603002852021](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002852021.png)

![image-20200603002916045](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002916045.png)

![image-20200603002928374](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002928374.png)

![image-20200603002940979](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603002940979.png)![image-20200603003004062](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003004062.png)

相互独立的随机变量

![image-20200603003043159](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003043159.png)

![image-20200603003058084](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003058084.png)

两个随机变量的函数的分布

![image-20200603003114033](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003114033.png)

![image-20200603003125404](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003125404.png)

![image-20200603003136701](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003136701.png)

![image-20200603003147015](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003147015.png)

![image-20200603003200860](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003200860.png)

![image-20200603003220659](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003220659.png)

![image-20200603003235160](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003235160.png)

![image-20200603003249522](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003249522.png)

随机变量的数字特征

数学期望

![image-20200603003356689](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003356689.png)

![image-20200603003412502](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003412502.png)

![image-20200603003425733](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003425733.png)

![image-20200603003443070](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003443070.png)

![image-20200603003504412](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603003504412.png)

方差

![image-20200603011111731](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603011111731.png)

![image-20200603011126936](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603011126936.png)

![image-20200603011217090](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603011217090.png)

![image-20200603011237802](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603011237802.png)

![image-20200603011249286](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603011249286.png)

协方差和相关系数

![image-20200603011301659](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603011301659.png)

![image-20200603011347938](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603011347938.png)

![image-20200603011400452](/Users/reneelin/Library/Application Support/typora-user-images/image-20200603011400452.png)

大数定理和中心极限定理

大数定理

![image-20200604004202619](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604004202619.png)

![image-20200604004215339](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604004215339.png)

![image-20200604004227984](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604004227984.png)

中心极限定理

![image-20200604004251180](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604004251180.png)

![image-20200604004304441](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604004304441.png)

![image-20200604004317185](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604004317185.png)

![image-20200604004331471](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604004331471.png)

![image-20200604004345076](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604004345076.png)

样本及抽样分布

随机样本

统计量

![image-20200604011408928](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011408928.png)

![image-20200604011420564](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011420564.png)

![image-20200604011441430](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011441430.png)

![image-20200604011526289](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011526289.png)

![image-20200604011538320](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011538320.png)

![image-20200604011549449](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011549449.png)

抽样分布

![image-20200604011608017](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011608017.png)

![image-20200604011619176](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011619176.png)

![image-20200604011646472](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011646472.png)

![image-20200604011658693](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011658693.png)

![image-20200604011714089](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011714089.png)

![image-20200604011742034](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011742034.png)

![image-20200604011753218](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011753218.png)

![image-20200604011806335](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011806335.png)

![image-20200604011822200](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011822200.png)

![image-20200604011835463](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011835463.png)

![image-20200604011851392](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011851392.png)

![image-20200604011905047](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604011905047.png)

参数估计

点估计

![image-20200604012046137](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012046137.png)

![image-20200604012055905](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012055905.png)

![image-20200604012108019](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012108019.png)

![image-20200604012121034](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012121034.png)

![image-20200604012139633](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012139633.png)

![image-20200604012156389](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012156389.png)

![image-20200604012208127](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012208127.png)

估计量的评选标准

![image-20200604012220772](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012220772.png)

![image-20200604012232143](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012232143.png)

![image-20200604012244302](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012244302.png)

区间估计

![image-20200604012301481](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012301481.png)

![image-20200604012314475](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012314475.png)

![image-20200604012333390](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012333390.png)

![image-20200604012343695](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012343695.png)

正态总体的均值和方差的区间估计

![image-20200604012357058](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012357058.png)

![image-20200604012820183](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012820183.png)

![image-20200604012833521](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012833521.png)

单侧置信区间

![image-20200604012852243](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012852243.png)

![image-20200604012910708](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604012910708.png)

假设检验

假设检验

![image-20200604013040253](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013040253.png)

![image-20200604013053053](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013053053.png)

![image-20200604013108533](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013108533.png)

![image-20200604013122046](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013122046.png)

![image-20200604013135125](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013135125.png)

![image-20200604013146512](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013146512.png)

![image-20200604013203608](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013203608.png)

![image-20200604013217335](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013217335.png)

![image-20200604013237668](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013237668.png)

正态总体均值的假设检验

![image-20200604013253348](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013253348.png)

![image-20200604013304212](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013304212.png)

![image-20200604013314966](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013314966.png)

![image-20200604013324875](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013324875.png)

正态总体方差的假设检验

![image-20200604013338031](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013338031.png)

![image-20200604013350266](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013350266.png)

![image-20200604013405163](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013405163.png)

![image-20200604013417135](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013417135.png)

![image-20200604013428289](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013428289.png)

置信区间与假设检验的关系

![image-20200604013443202](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013443202.png)

![image-20200604013453699](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013453699.png)

分布拟合试验

![image-20200604013518871](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013518871.png)

![image-20200604013529077](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013529077.png)

![image-20200604013543331](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013543331.png)

![image-20200604013556200](/Users/reneelin/Library/Application Support/typora-user-images/image-20200604013556200.png)